Biochemistry researchers repair and regenerate heart muscle cells: Discovery has potential to become ‘powerful clinical strategy’ for treating heart disease

Researchers at the University of Houston are reporting a first-of-its-kind technology that not only repairs heart muscle cells in mice but also regenerates them following a heart attack, or myocardial infarction as its medically known.

Published in the Journal of Cardiovascular Aging, the groundbreaking finding has the potential to become a powerful clinical strategy for treating heart disease in humans, according to Robert Schwartz, Hugh Roy and Lillie Cranz Cullen Distinguished Professor of biology and biochemistry at the UH College of Natural Sciences and Mathematics.

The new technology developed by the team of researchers uses synthetic messenger ribonucleic acid (mRNA) to deliver mutated transcription factors — proteins that control the conversion of DNA into RNA — to mouse hearts.

“No one has been able to do this to this extent and we think it could become a possible treatment for humans,” said Schwartz, who led the study with recent Ph.D graduate Siyu Xiao and Dinakar Iyer, a research assistant professor of biology and biochemistry.

Synthetic mRNA Contributes to Stem Cell-Like Growth

The researchers demonstrated that two mutated transcription factors, Stemin and YAP5SA, work in tandem to increase the replication of cardiomyocytes, or heart muscle cells, isolated from mouse hearts. These experiments were conducted in vitro on tissue culture dishes.

Source: Read Full Article