Home » Health News »
New material paves the way for remote-controlled medication and electronic pills
Biomedicines are produced by living cells and are used to treat cancer and autoimmune diseases among other things. One challenge is that the medicines are very expensive to produce, something that limits global access. Now researchers from Chalmers have invented a material that uses electrical signals to capture and release biomolecules. The new and efficient method may have a major impact in the development of biomedicines and pave the way for the development of electronic pills and drug implants.
The new material is a polymer surface* which at an electrical pulse changes state from capturing to releasing biomolecules. This has several possible applications, including use as a tool for the efficient separation of a medicine from the other biomolecules that cells create in the production of biological medicines. The results of the study were recently published in the scientific journal Angewandte Chemie.
Biomedicines are very expensive to produce due to the lack of an efficient separation technique, and new techniques with a higher drug yield are required to reduce production costs and ultimately the cost of treating patients.
“Our polymer surfaces offer a new way of separating proteins by using electrical signals to control how they are bound to and released from a surface, while not affecting the structure of the protein,” says Gustav Ferrand-Drake del Castillo, who publicly defended his doctoral thesis in chemistry at Chalmers and is the lead author of the study.
The conventional separation technique — chromatography — binds biomolecules tightly to the surface and strong chemicals are required to make them release, which leads to losses and a poor yield. Many new medicines have proved to be highly sensitive to strong chemicals, which creates a major production problem for the next generation of biomedicines. The lower consumption of chemicals results in a benefit to the environment, while the fact that the surfaces of the new material can also be reused through several cycles is a key property. The process can be repeated hundreds of times without affecting the surface.
Functions in biological fluids
The material also functions in biological fluids with a buffering capacity, in other words fluids with the ability to counteract changes in the pH value. This property is remarkable since it paves the way for the creation of a new technique for implants and electronic “pills” that release the medicine into the body via electronic activation.
Source: Read Full Article