Patients with hypertension can now use this new stress free algorithm for treatment

Hypertensive patients can now receive intensive treatments faster. In a recent study, researchers have devised a machine learning algorithm which combines three variables routinely collected during clinic visits and demonstrates how the emerging field of bioinformatics could transform patient care.

It takes a patient’s age, urinary albumin/creatinine ratio (UACR), and cardiovascular disease history to successfully identify hypertensive patients for whom the benefits of intensive therapy outweigh the risks. “Large randomized trials have provided inconsistent evidence regarding the benefit of intensive blood pressure lowering in hypertensive patients,” said a researcher, Yang Xie.

“To the best of our knowledge, this is the first study to identify a subgroup of patients who derive a higher net benefit from intensive blood pressure treatment,” he added. Researchers used patient data under controlled trials that tested intensive vs. standard blood pressure-lowering treatments — the Systolic Blood Pressure Intervention Trial (SPRINT) and the Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial.

The SPRINT trial included 9,361 non-diabetic hypertensive adults at an elevated risk of a cardiovascular event, while ACCORD enrolled 10,251 patients with Type 2 diabetes. “I think our algorithm can help us identify high-risk patients who will most likely benefit from intensive blood pressure reduction. Long-term intensive HBP drug therapy can reduce the risk of heart failure and death, but it carries an increased risk of side effects,” said another researcher, Wanpen Vongpatanasin.

The researchers’ machine learning method determined three simple criteria to identify adults with high blood pressure who are at the highest risk for early major adverse cardiovascular events — such as cardiovascular death, heart attack, or stroke.

Follow @htlifeandstyle for more

Source: Read Full Article